Vol. 12, Issue 23, pp. 210-214, 2023

https://doi.org/10.47068/ctns.2023.v12i23.023

Current Trends in Natural Sciences (on-line)

ISSN: 2284-953X ISSN-L: 2284-9521 Current Trends in Natural Sciences (CD-Rom) ISSN: 2284-9521 ISSN-L: 2284-9521

MONITORING OF THE MAIN PATHOGENS FOUND IN APPLE PLANTATIONS AT SCDP IASI

Cristina Ionela Turcu¹, Simona Mihaela Chelaru*¹, Agurița Aftudor Manolache¹, Ionel Perju¹

¹ Research Station for Fruit Growing Iasi, Str. Ion Vodă Cel Viteaz, nr. 3, Miroslava, Iași, Romania

Abstract

The observations took place at RSFG Iasi, Development Center Falticeni in 2022, in apple plantations where a number of 9 phytosanitary treatments were applied to the warning, with the spray machine of the type Agroma. A total of 3 varieties (Jonathan, Golden delicious, Stakrimson) were studied compared to the untreated variant.

The phytosanitary treatment program covered a wide range of phytopharmaceuticals, using 8 contact and systemic fungicides to prevent and combat pathogens that produce Venturia inaequalis, Erwinia amylovora,, Podosphaera leucotricha (Ell. et Ev) Salm and Monilinia laxa.

Thus, in the untreated variant, the degree of attack for rapeseed on the fruit was 82.8%, and for Podosphaera leucotricha on the shoots the attack was 35% in the Jonathan variety.

In the treated plot, the degree of Venturia inaequalis attack on fruit was reduced to 11.3% and 3.0% in the Starkrimson and Golden delicious varieties, and in the Jonathan variety up to 0.5%.

Keywords: degree of attack, phytosanitary treatment, Venturia inaequalis.

1. INTRODUCTION

The use when planting varieties that have a certain level of resistance to several common diseases of the apple tree (Venturia inaequalis, Erwinia amylovora,, Podosphaera leucotricha (Ell. et Ev) Salm and Monilinia laxa.) can reduce the number of treatments with fungicides and the total cost of the spraying program in a given growing season. (Baudoin et al., 2010).

Table 1. Susceptibility of apple varieties at Podosphaera leucotricha

Apple variety	Sensitivity
Golden Delicious	S
Idared	HS
Jonathan	HS

HS= very susceptible (control is always necessary when the disease is present)

S = susceptible (control is usually necessary when the disease is present)

R = resistant(control is necessary only in conditions of high pressure of the disease)

210

Vol. 12, Issue 23, pp. 210-214, 2023

https://doi.org/10.47068/ctns.2023.v12i23.023

Current Trends in Natural Sciences (on-line)

ISSN: 2284-953X ISSN-L: 2284-9521 Current Trends in Natural Sciences (CD-Rom)

ISSN: 2284-9521 ISSN-L: 2284-9521

Podosphaera leucotricha (Ell. et Everh.) Salm., is one of the most harmful diseases of the apple tree, Romania (Sestras, 2010).

The studies of the FAO database (2022) show the fruiting of apple production in Romania according to table 1, where from 2011 to 2021 the highest production was recorded in 2018 with 634770 tons and the lowest in 2017 with a production of 348656 tons.

Table 2. Apple production in Romania in the period 2011-2021

1 aote 2. 11p	Tubic 2. Apple production in Romania in the period 2011-2021							
Item	Year	Unit	Value					
Apples	2011	tonnes	620362,00					
Apples	2012	tonnes	462935,00					
Apples	2013	tonnes	513580,00					
Apples	2014	tonnes	513195,00					
Apples	2015	tonnes	476059,00					
Apples	2016	tonnes	467259,00					
Apples	2017	tonnes	348656,00					
Apples	2018	tonnes	634770,00					
Apples	2019	tonnes	492700,00					
Apples	2020	tonnes	537470,00					
Apples	2021	tonnes	593700,00					

2. MATERIALS AND METHODS

Observations and determinations were made in the field in August (for secondary infections) regarding the attack of fungi that produce *Venturia inaequalis* on leaves and fruits, *Podosphaera leucotricha* on shoots, respectively the frequency, intensity and degree of attack on fruits or shoots, presented in the table below.

In the conditions of 2022, in the apple plantations, a number of 9 phytosanitary treatments were applied to the warning, with the Agroma spraying machine, according to the table below. When warning treatments to combat pathogens and pests, several factors were taken into account: the biology of parasites; the evolution of climatic conditions; the evolution of the phenology of the apple tree; the plant protection products used and their period of action.

The phytosanitary treatment program included a wide range of plant protection products, using 8 contact and systemic fungicides to prevent and control pathogens that produce *Venturia inaequalis*, *Erwinia amylovora*, *Podosphaera leucotricha* and *Monilinia laxa*. These fungicides have been applied in an alternating and complexed way in order not to create resistance, in close correlation with the pressure of infection of pathogens and their period of action.

Each treatment applied with fungicides was also complexed in the conditions of this year with insecticides that have a wider spectrum of control. Insecticides numbered 7, to combat *Quadraspidiotus perniciosus, Aphis spp., Sciaphobus squalidus, Eriosoma lanigerum, Adoxophyes orana, Adoxophyes reticulana, Cydia pomonella.* The climatic conditions of 2022 were very favorable to the development of the fungus that produces the apple tree's *Venturia inaequalis* starting from April, May and June when mornings with dew were recorded, high daily temperatures

Vol. 12, Issue 23, pp. 210-214, 2023

https://doi.org/10.47068/ctns.2023.v12i23.023

Current Trends in Natural Sciences (on-line)

ISSN: 2284-953X ISSN-L: 2284-9521 Current Trends in Natural Sciences (CD-Rom) ISSN: 2284-9521 ISSN-L: 2284-9521

for this period, frequent precipitation, fallen in averse, in the number of 11 days (August) and 14 days (September).

During the vegetation period (May - August) the average monthly temperatures recorded were by about 1.0-5.4° C higher than the monthly normal of the area, and the absolute maximum was 37.0° C.

The high amplitude of day-to-night temperatures caused most of the mornings of the growing season to be dew, which persisted on the trees during the day (4-5 hours) which caused a high infection pressure for the apple tree's Venturia inaequalis. Both persistent dew and short-term precipitation, recorded repeatedly, made it difficult to apply phytosanitary treatments.

Table 2. Phytosanitary treatments performed at the fruit apple tree, in 2022 at S.C.D.P. IASI - C.D. Falticoni

		Falticeni					
NO. TREATMENTS , DATE, PHENOPHASE	NAME OF PLANT PROTECTION PRODUCTS	DOSE/ HA	DISEASES, PESTS				
Treatment no. 1. 08-15.04	B.bordelaise	5,0 kg	Venturia inaequalis, Erwinia amylovora				
Budding	Ovipron Top	11,01	Quadraspidiotus perniciosus, Aphis spp., Eriosoma				
	Decis 25WG	0,045 kg	lanigerum, Adoxophyes orana, Adoxophyes reticulana				
Treatment no. 2. 27-28.04	Fontelis	0,751	Venturia inaequalis, Podosphaera leucotricha.				
Pink button	Mospilan 20 SG	0,45 kg	Aphis spp., Adoxophyes orana, Adoxophyes reticulana				
	Polyactiv B	1,01	Foliar fertilizer				
Treatment no. 3. 11-12.05 Petal shake	Chorus 50WG	0,6 kg	Venturia inaequalis, Podosphaera leucotricha, Monilinia laxa				
	Kumulus DF	4,0 kg	Podosphaera leucotricha.				
	Mavrik	0,751	Aphis spp., Sciaphobus squalidus .				
Treatment no.4. 02-03.06	Score250 EC	0,21	Venturia inaequalis, Podosphaera leucotricha.				
Fruit diameter 1.5-2 cm	Coragen	0,151	Cydia pomonella				
Treatment no. 5 09-10.06	Folicur solo	0,61	Venturia inaequalis, Podosphaera leucotricha.				
Fruit diameter 2.5 cm	Decis 25WG	0,045 kg	Cydia pomonella, Aphis spp				
Treatment no. 6 17-18.06 Fruit diameter 3 cm	Chorus 50WG	0,6 kg	Venturia inaequalis, Podosphaera leucotricha., Monilinia laxa				
	Mospilan 20 SG	0,45 kg	Quadraspidiotus perniciosus, Aphis spp., Eriosoma lanigerum				
Treatment no. 7 24-28.06 Fruit diameter 3.5 cm	Score250 EC	0,251	Venturia inaequalis, Podosphaera leucotricha, Monilinia laxa				
	Coragen	0,151	Cydia pomonella, Aphis spp. , Adoxophyes orana, Adoxophyes reticulana				
Treatment no. 8 10-12.07	Folicur solo	0,7 1	Venturia inaequalis, Podosphaera leucotricha.				
Fruit diameter 4 cm	Karate Zeon	0,251	Aphis spp, molii, Cydia pomonella,				
	Rezistevo	4,0 kg	Physiological and storage diseases				
Treatment no. 9 23-26 .07 Fruit diameter 5 cm	Luna experience	0,7 1	Venturia inaequalis, Podosphaera leucotricha., keeping diseases				
	Decis 25WG	0,040 kg	Cydia pomonella, Aphis spp, Eriosoma lanigerum, Quadraspidiotus perniciosus				

Vol. 12, Issue 23, pp. 210-214, 2023

https://doi.org/10.47068/ctns.2023.v12i23.023

Current Trends in Natural Sciences (on-line) ISSN: 2284-953X

ISSN-L: 2284-9521

Current Trends in Natural Sciences (CD-Rom) ISSN: 2284-9521 ISSN-L: 2284-9521

3. RESULTS AND DISCUSSIONS

The main pathogens of importance in monitoring the occurrence, development and attack on apple plantations are *Venturia inaequalis* and *Podosphaera leucotricha*. In order to maintain the plantations, in addition to the cultural measures and measures of prevention and control are carried out with the help of chemical protection products specific to the crop, the damaging agent and the fenofase for the development of the trees.

The first spots of *Venturia inaequalis* on the leaves were reported on 30.05 in the Golden delicious variety, and the first spots of *Venturia inaequalis* on the fruit were recorded on 6.06 in the Starkrimson and Golden delicious varieties.

Table 3. Assessment of the attack of the main pathogens in apple trees, in the conditions of 2022

No crt	Variety	Venturia inaequalis on fruit		Venturia inaequalis on leaves			Podosphaera leucotricha on shoots			
		F%	Ι%	GA%	F%	Ι%	GA%	F%	Ι%	GA%
1.	Jonathan	10	3	0,3	25	15	3,8	15	30	4,5
2.	Golden delicious	20	15	3,0	35	40	14,0	5	10	0,5
3.	Stakrimson	35	30	10,5	45	25	11,3	0	0	0,0
4.	Untreated control	90	92	82,8	85	90	76,5	50	70	35,0

Figure 1. Jonathan variety and Golden delicious variety appearance at physiological maturity

Thus, under the conditions of applying the treatments, in 2022 the Starkrimson and Golden varieties were very sensitive to *Venturia inaequalis* on fruits with a frequency of 20-35%, an intensity of 15-30% and an attack degree between 3,0 and 10,5%. *Podosphaera leucotricha* on the shoots had a

Vol. 12, Issue 23, pp. 210-214, 2023

https://doi.org/10.47068/ctns.2023.v12i23.023

Current Trends in Natural Sciences (on-line)

ISSN: 2284-953X ISSN-L: 2284-9521 Current Trends in Natural Sciences (CD-Rom)

ISSN: 2284-9521 ISSN-L: 2284-9521

frequency of between 5 % in the Golden variety and 15 % in the Jonathan variety, an intensity of 10 % in the Golden delicious variety and 30 % in the Jonathan variety, and the degree of attack was 0,5 % in the Golden delicious variety and 4,5 % in the Jonathan variety, very low attack values compared to the untreated control. In the untreated control there was a frequency of *Venturia inaequalis* on the fruit of 50%, an intensity of 70% and an attack degree of 35%.

4. CONCLUSIONS

In 2022, there were favorable conditions for the development of pathogens that produce *Venturia inaequalis*, *Erwinia amylovora* and *Podosphaera leucotricha*. Thus in the untreated control, the degree of attack for *Venturia inaequalis* on the fruit was 82,8%, and for flouring on the shoots the attack was 35% in the Jonathan variety. In the treated plot the degree of attack for *Venturia inaequalis* on fruit was reduced to 11,3% and 3,0% in the Starkrimson and Golden delicious varieties, and in the Jonathan variety up to 0,5%.. For *Podosphaera leucotricha* on shoots the degree of attack was reduced to 4,5% in the Jonathan variety, and for *Monilinia laxa* the frequency was 1% (Golden variety) very low values compared to the untreated control.

In preventing and combating *Venturia inaequalis*, *Podosphaera leucotricha* and *Monilinia laxa* in apple trees have been very effective have been shown to be fungicides, Bouillie bordelaise 5,0 kg/ha, Folicur solo 0,7 l/ha, Fontelis 0,75 l/ha and Luna experience 0,7 l/ha.

5. REFERENCES

- Gradinaru, G., Istrate, M. (2009). Pomicultura generală si special [General and special fruit growing]. Edit. Tipo Moldova: 18.
- Marine, S.C., Yoder, K.S., Baudoin, A. (2010). Făinarea mărului [Powdery mildew of apple]. *Instructorul de sănătate a plantelor*. DOI:10.1094/PHI-I-2010-1021-01
- Molnar L., Borcean A., Ramona Ștef, Daniela Băluță (2010). Studies concerning *Podosphaera leucotricha* ell. et ev. salmon fungai performance of in five apple varieties durring the climatic conditions in 2009, at s.d.e. Timisoara, Research Journal of Agricultural Science, 42 (2)
- Sestraș, R., Ghidra, V., Râureanu, V. (1995). Particularități ale unor soiuri de măr create la Cluj Napoca comparativ cu soiul Jonathan. III. Alternanța producției de fructe și comportarea față de atacul principalelor boli și dăunători [Particularities of some apple varieties created in Cluj Napoca compared to the Jonathan variety. III. Alternation of fruit production and behavior against the attack of the main diseases and pests], Bul. USAMV, A-H, 49/1, p 25-32.

Stanică, F., Braniște, N. (2015). Ghid pentru pomicultori. [Guide for fruit growers] Editura Ceres București, 50-52. https://www.fao.org/faostat/en/#data/QCL (accesed 30.04.2023)