Current Trends in Natural Sciences (on-line) ISSN: 2284-953X ISSN-L: 2284-9521 Current Trends in Natural Sciences (CD-Rom) ISSN: 2284-9521 ISSN-L: 2284-9521

ECONOMICAL COMPARISON OF STEEL-FRAMED GREENHOUSE SYSTEMS

Adem Budak ^{1,*}, Sedat Karaman ²

¹Graduate School of Natural and Applied Sciences, Tokat Gaziosmanpaşa University, 60150 Tokat, Turkey ²Department of Biosystem Engineering, Faculty of Agriculture, Tokat Gaziosmanpaşa University, 60150 Tokat, Turkey

Abstract

Since greenhouses are highly expensive structures, they need to be designed carefully with the use of modern technology of the day. Especially in the design of high-cost steel-framed greenhouses, system selection and dimensioning play an important role in economical design of load-bearing members. This study was conducted to investigate the effects of two different roof types (gothic and gable), two different truss spacings (2.5 and 3 m) and three different truss spans (6, 8 and 9.6 m) on cross-sections of load-bearing steel members, overall weight and final cost of greenhouse systems. Overall width of the systems was 48 m, length was 60 m and height was 4.5 m. Totally, 12 different greenhouse systems were designed and analyzed with the use of SAP2000 software, AutoCAD software, Excel worksheets, relevant standards and regulations. It was concluded based on present findings that gothic roof system with 3 m truss spacing and 9.6 truss span was lighter and more economical than the other systems. In terms of safety, gothic and gable roof systems with 6 m truss span and 2.5 m truss spacing were superior to other systems.

Keywords: Construction, Greenhouse, Quantity takeoff, SAP2000

1. INTRODUCTION

When the relevant production and quality standards are not met and modern technology is not applied properly or completely, various problems are encountered in greenhouses. Such problems include load-bearing system failures, heating, ventilation and cooling problems. Significant yield and quality losses can be encountered in cultivation activities carried out in simple structures designed without taking into account the local climate conditions. Either more or less building materials are used in greenhouses built without static and strength calculations. Excessive material uses bring about extra costs and increase indoor shading ratios. On the other hand, insufficient material uses may result in structural failures and financial losses accordingly. A profitable greenhouse cultivation can only be realized with greenhouse projects that do not have technical problems, can meet appropriate environmental conditions, have a long economic life, have a completed infrastructure and with a low investment, maintenance and repair costs. Since greenhouses are highly expensive structures, they need to be designed carefully and with the modern technology of the day. Especially in design of high-cost steel-framed greenhouses, type and dimensions of the system should be so selected as to prevent structural failures and to allow economical transfer and bearing of dead and live loads.

https://doi.org/10.47068/ctns.2023.v12i23.015

Current Trends in Natural Sciences (on-line) ISSN: 2284-953X ISSN-L: 2284-9521 Current Trends in Natural Sciences (CD-Rom) ISSN: 2284-9521 ISSN-L: 2284-9521

Besides agricultural and economic problems, greenhouse cultivation has various other engineering problems to be solved. Main problems related to greenhouse engineering include design, construction, heating ventilation and air conditioning (HVAC), lighting and automatic control of growing conditions. Research on these engineering problems may have significant contributions to development of greenhouse industry. To overcome these problems, greenhouse productions should be done according to plans and projects. In this way, proper design and dimensioning of structural members will be possible and construction costs could be reduced significantly. Greenhouse design, drawings and calculations with classical methods may take long time. Therefore, design software are commonly used in greenhouse design. In classical designs, cross-sectional analyses are not conducted and resultant members are not able bear dead and live loads, ending up structural failures. Since optimizations are not made for material uses, less durable greenhouses emerge with greater expenses.

Engineering principles should be kept at forefront in greenhouse design. Structural members should be so designed as to provide sufficient strength against the loads exerted on them and to fulfill expected functions accordingly. On the other hand, considering the desire of producers to strengthen the greenhouse construction and reduce the construction cost, effects of wind and other external environmental conditions on greenhouse construction should be determined. While increasing the safety in greenhouse design, costs increase since cross-section and dimensions of structural members are increased. Therefore, economic dimensioning is an important criteria, but it is still taken into consideration at minimum level. Selected materials and the cost of these materials should be taken into consideration. Structural members should so be dimensioned as to safely bear the loads exerted on them and prevent potential structural failures.

In this study, optimum design of steel-framed greenhouses with different roof types, truss spans and spacings was performed and effects of these parameters on construction costs were determined. Economic comparisons were made and economic load-bearing systems suitable for plant production were determined. The most economical planning models with different load-bearing systems and materials were generated with the use of computer-aided static and dynamic analyses.

2. MATERIAL AND METHOD

Initially, greenhouse overall dimensions were determined. Then, taking relevant standards into consideration, snow loads, wind loads, loads exerted by cover material, loads exerted by plants hanged on roof and the other loads to be bearded were determined. Analyses and designs were made for structural members. For preliminary designs, galvanized steel was preferred as the primary material, steel profile types were determined and polycarbonate was selected as the cover material.

Present greenhouse systems were analyzed and dimensioned with the use SAP2000 structural analysis software (v22.0.0/2020). The software uses finite element method in analyses. Besides this software, AutoCAD (v2020) was also used as a supplementary software (CSI, 2016).

Construction Unit Price tables of the Ministry of Environment, Urbanization and Climate Change were used for analysis and pricing of the items listed in bill of quantities (Anonymous, 2022).

In this study, design and analyses of greenhouse systems under static loads and wind loads were carried out in accordance with the relevant standards and "Regulation on design, calculation and construction of steel structures" (TS 648, 1980; TS 12741, 2001; Yüksel and Yüksel, 2012;

Anonymous, 2018; TS EN 10025-2, 2019; TS EN 10025-5, 2019; TS EN 13031-1, 2020; TS 498, 2021; TS EN 1993-1-1, 2022; TS EN 13031-1 /AC, 2022).

2.1.1. Material properties and standards

Along with the standards on load-bearing steel systems; high-strength Class-S355 structural steel profiles with sufficient quality properties and quite a large range of use were used. These profiles are readily available in Turkey and widely preferred in steel structures. For Class-S355 steel, yield stress was taken as 355 N mm⁻² and fracture stress was taken as 510 N mm⁻² (TS EN 10025-2, 2019; TS EN 10025-5, 2019).

As the roof and side cover material, 8 mm polycarbonate (PC) material was selected (TS EN 13206:2017+A1, 2020).

Thin-walled square and rectangular profiles, thick-walled rectangular profiles, pipe profiles, C-profiles and fasteners were used in the building design. Galvanized steel bolts were used as fasteners and weldless and modular connections were provided. Welded nodes, which are easy and fast to produce, were preferred in truss system.

The support connection, which connects the beams, gutters and columns in one piece as the column head, is specially shaped from 4 mm thick sheet metal. Dual-roof ventilation system was used as the ventilation system. Individual footings with 60x60x80 cm dimensions were used as foundation style. These footings constructed under each column transmit the loads to the foundation ground by spreading the loads under the column or load-bearing wall. These individual footings were connected with tie-beams.

2.1.2. Greenhouse dimensions

From the preliminary interviews with the greenhouse construction companies and the catalog examinations, it was determined that column spacing of the greenhouse should be 2.5-3 m, beam spans should be 6, 8 or 9.6 m and column height should be 4.5 m. Therefore, these values were taken into consideration present designs. Greenhouse width was specified as 48 m and greenhouse length as 60 m. At truss spans of 6, 8 and 9.6 m, there will be 8, 6 and 5 spans, respectively. Entire ground space of all systems was set as 2880 m² with 25 axes for 2.5 m truss-span greenhouse systems and 20 axes for 3 m truss-span greenhouse systems.

Greenhouse roof systems were designed as gable and gothic roof. Ventilation openings were arranged on the roof as not to be less than 20% of the floor space. Side ventilation openings were designed as a guillotine ventilation system (Zabeltitz, 1990). Greenhouse door was designed as 4.8 x 4.8 m at 9.6 m truss span, 4×4 m at 8 m truss span and 3×3 m at 6 m truss span.

Table 2.1. Dimensions of greenhouse systems				
	Gothic Roof	Gable Roof		
Greenhouse width	48 m	48 m		
Greenhouse length	60 m	60 m		
Greenhouse floor area	2880 m ²	2880 m^2		
Greenhouse sidewall height	4.5 m	4.5 m		
Greenhouse roof slope	26°	26°		
Truss spacing	2.5 m and 3 m	2.5 m and 3 m		
Span	6 m, 8 m and 9.6 m	6 m, 8 m and 9.6 m		

2.1.3. Effective loads

https://doi.org/10.47068/ctns.2023.v12i23.015

Current Trends in Natural Sciences (on-line) ISSN: 2284-953X ISSN-L: 2284-9521

External loads acting on the load-bearing systems are calculated according to the materials used and the roof characteristics and converted into uniformly distributed loads and effected on the structure. Wind load, cover load and plant load were taken as external loads in calculations. Wind speeds and other climate data were taken into consideration as design criteria in SAP2000 software. Earthquake dynamic loads were not taken into considerations since these loads do not have significant effects on greenhouses with low total weight. In this way, selection of larger members and shading effect of these larger members were prevented.

Tomatoes and cucumbers were considered to be cultivated in selected greenhouses. Thus, plant load was taken as 0.20 kN m⁻². Load of gutter and other elements was taken as 0.13 kN m⁻². Greenhouse roof and side cover is planned to be made with 8 mm thick polycarbonate sheets, thus cover load was selected as 1.5 kgf m⁻². The load exerted by ventilation equipment to be used for roof ventilation systems was taken as 0.07 kN m⁻² (Saltuk, 2005; Yüksel and Yüksel, 2012; TS EN 13206:2017+A1, 2020; TS EN 13031-1, 2020; TS 498, 2021).

Snow load: Snow load is a seasonal live load and depends on geographical and meteorological conditions. Potential snow loads were taken from snow load tables of Tokat province 3rd region (TS 498, 2021). Calculated snow load values were converted into linear load on purlins and gutters of greenhouse structure.

Wind load: Wind load is also a seasonal live load and largely depends on prevailing wind direction, building height and geometry (TS 498, 2021). Present greenhouse heights vary between 0-8 m. For buildings of 0-8 m high, wind speed was taken as 28 m s⁻¹ and q (wind pressure) was taken as 0.5 kN m⁻². Wind load is taken into account by combining the effects of pressure, suction and friction (TS 498, 2021). Calculated wind loads were converted into linear load on purlins, columns and gutters of greenhouse structure.

2.1.4. Load combinations

LRFD (Load and Resistance Factor Design) load combinations specified in 5.3.1 LRFD article of the "Regulation on design, calculation and construction principles of steel structures" published by the Ministry of Environment and Urbanization (Anonymous, 2018).

2.2. Method

Initially, preliminary designs were conducted for two different roof types, 3 different truss spans and two different truss spacings (12 different systems). Loadings, materials and profile types were determined. Designed systems were modeled with the use of SAP2000 software in accordance with "Regulations on calculation, design and construction principles of steel structures" (Anonymous, 2018) and the other relevant regulations and standards. Then, finite element analysis of the models was performed (CSI, 2016; Fırat, 2019).

Resultant bill of quantities was converted into cost calculations with the use of Unit Price Lists unit price lists of the Ministry of Environment, Urbanization and Climate Change (Anonymous, 2022) MS Office Excel worksheets. Results were compared again with the use of Excel software.

2.2.1. Preliminary design of greenhouse systems

Following the identification of loadings, material classes and profile type (TS EN 10025-2, 2019; TS EN 10025-5, 2019; TS EN 13206:2017+A1, 2020), 12 different systems (6 m, 8 m and 9.6 m truss spans and 2.5 m and 3 m truss spacing) were analyzed.

Current Trends in Natural Sciences Vol. 12, Issue 23, pp. 137-149, 2023 https://doi.org/10.47068/ctns.2023.v12i23.015

Current Trends in Natural Sciences (on-line) ISSN: 2284-953X ISSN-L: 2284-9521 Current Trends in Natural Sciences (CD-Rom) ISSN: 2284-9521 ISSN-L: 2284-9521

With the use of 3D drawing feature of AutoCAD 2020 software, greenhouse layouts, axis definitions and system models were made.

With the use of SAP2000 software, structural modeling phases were arranged as; material definition, cross-section definitions of structural members, importing the modeled structure in AutoCAD software, section assignments of the transferred elements, definition of load types and formation of load combinations.

Structural	6 m span					
members	2.5 m	spacing	3 m s	pacing		
	Gothic roof	Gable roof	Gothic roof	Gable roof		
Footing	RHS 150x100x3.2 mm	RHS 150x100x3.2 mm	RHS 180x100x3.2 mm	RHS 180x100x3.2 mm		
Truss	CHS 76.1x2 mm	CHS 76.1x2 mm	CHS 76.1x2 mm	CHS 76.1x2 mm		
Diagonal	CHS 33.7x2 mm	CHS 33.7x2 mm	CHS 33.7x2 mm	CHS 33.7x2 mm		
Transverse	CHS 60.3x2 mm	CHS 60.3x2 mm	CHS 60.3x2 mm	CHS 60.3x2 mm		
Purlin	C80	C80	C100	C100		
Head purlin	C80	C80	C80	C80		
	8 m span					
Footing	RHS 150x100x3.2 mm	RHS 180x100x3.2 mm	RHS 180x100x3.2 mm	RHS 180x100x3.2 mm		
Truss	CHS 88.9x2 mm	CHS 88.9x2 mm	CHS 101.6x2 mm	CHS 88.9x2.5 mm		
Diagonal	CHS 33.7x2 mm	CHS 33.7x2 mm	CHS 33.7x2 mm	3 CHS 3.7x2 mm		
Transverse	CHS 60.3x2 mm	CHS 60.3x2 mm	CHS 60.3x2 mm	CHS 60.3x2 mm		
Purlin	C100	C100	C120	C120		
Head purlin	C80	C80	C80	C80		
9.6 m span						
Footing	RHS 180x100x3.2 mm	RHS 180x100x3.2 mm	RHS 180x100x3.2 mm	RHS 200x100x4 mm		
Truss	CHS 88.9x2 mm	CHS 101.6x2 mm	CHS 101.6x2 mm	CHS 101.6x2 mm		
Diagonal	CHS 48.3x2.5 mm	CHS 60.3x2 mm	CHS 60.3x2 mm	CHS 60.3x2 mm		
Transverse	CHS 60.3x2 mm	CHS 60.3x2 mm	CHS 76.1x2 mm	CHS 60.3x2 mm		
Purlin	C100	C100	C120	C120		
Head purlin	C80	C80	C80	C80		

<i>Table 2.2.</i>	Profiles	used in	greenhouse	svstems
1 4010 2.2.	110/1105	uscu m	Siccunouse	systems

2.2.2. Static analysis of greenhouse systems with SAP2000 software

Following the identification of member cross-sections and loadings of system models, static analysis was conducted in accordance with the LRFD method.

Since the "Regulation on the Design, Calculation and Construction of Steel Structures" (Anonymous, 2018) is not included in regulations and standards defined in SAP2000 software, analyses were carried out using the AISC 360-10 (2010) standard, which also includes that regulation.

The factor to be taken into consideration while performing the stress control is that all the elements in the lower and upper headings must be of the same cross-section due to the ease of application and constructive reasons, although it is not a requirement specified in the regulations. For this reason, the end forces in the lower and upper head elements are examined one by one, and stress control is made according to the load that occurs only in the most unfavorable loading situation. Stress control according to the steel quality (S355) and profile section (U profile, L profile or Box profile) selected before the analysis is done automatically by the system (Yakut, 2007).

As a result of static analysis, the SAP2000 software calculates the most unfavorable stress states that may occur in the elements in the most unfavorable condition and the stresses that the elements

https://doi.org/10.47068/ctns.2023.v12i23.015

Current Trends in Natural Sciences (CD-Rom) ISSN: 2284-9521 ISSN-L: 2284-9521

can carry, according to the LRFD method, of the elements with two different roof types and different truss spans and spacings. The highest capacity utilization rates that will occur in the load-bearing members are given in Table 2.3.

	6 m span				
Structural	2.5 m	spacing	3 m s	pacing	
members	Gothic roof	Gable roof	Gothic roof	Gable roof	
Column	52.35	51.61	50.86	50.14	
Truss	24.21	21.40	31.44	41.92	
Diagonal	24.21	21.40	31.44	41.92	
Transverse	24.21	21.40	50.86	50.14	
Purlin	75.77	69.08	94.47	90.30	
Head purlin	24.21	21.40	50.86	50.14	
Gutter	24.21	21.12	24.59	26.34	
	8 m span				
Column	86.26	81.60	57.04	78.23	
Truss	40.53	49.54	44.21	57.59	
Diagonal	40.53	49.54	44.21	57.59	
Transverse	61.66	56.57	57.04	60.60	
Purlin	86.26	81.60	81.96	78.23	
Head purlin	86.26	81.60	57.04	78.23	
Gutter	23.68	26.17	30.76	32.68	
		9.6 1	n span		
Column	57.39	93.66	57.77	90.26	
Truss	53.07	54.29	18.39	45.40	
Diagonal	53.07	72.39	18.39	45.40	
Transverse	53.07	93.66	30.61	72.84	
Purlin	98.41	93.66	93.48	90.26	
Head purlin	57.39	93.66	57.77	90.26	
Gutter	25.42	30.33	18.39	37.29	

Table 2.3. Maximum capacity use ratios at the worst-case scenario (%)

2.2.3. Bill of quantities and cost analyses

Following the analyses of greenhouse systems with SAP2000 software, resultant tables were transferred to MS Office Excel format. By making arrangements of the results transferred to the Excel software, bill of quantities were determined for greenhouse systems (Table 2.4, Table 2.5). The unit prices to be used in calculating the costs of greenhouse constructions were taken from 15.165.1001 and 15.165.1002-numbered items of 2022/3 Construction and Installation Unit Prices Book. Unit price analyses are provided in Table 2.6 and Table 2.7.

Table 2.4. Bill of quantities for gothic roof style (kg)						
	2.5 m	truss spaci	ng	3 n	n truss spacir	ıg
			Truss	span		
Structural members	6 m	8 m	9.6 m	6 m	8 m	9.6 m
Column	14.923	13.871	11.009	14.534	11.194	9.525
Truss upper and lower headings	9.324	10.935	10.921	7.832	10.528	10.515
Transverses	953	979	782	972	998	1.018
Diagonal	2.834	2.834	5.074	2.380	2.380	4.341
Gutter	7.625	5.931	5.083	7.625	5.931	5.083
Purlin	5.694	4.694	3.912	6.259	5.754	4.795

https://doi.org/10.47068/ctns.2023.v12i23.015

Current Trends in Natural Sciences (on-line)
ISSN: 2284-953X
ISSN-L: 2284-9521

Current Trends in Natural Sciences (CD-Rom) ISSN: 2284-9521 ISSN-L: 2284-9521

Side purlin	683	617	655	655	588	626
TOTAL	42.035	39.860	37.437	40.257	37.373	35.903

Table 2.5. Bill of quantities for gable roof style (kg)

	2.5 m truss spacing			3 m truss spacing		
			Truss spa	an		
Structural members	6 m	8 m	9.6 m	6 m	8 m	9.6 m
Column	14.923	12.926	11.009	14.534	11.194	12.706
Truss upper and lower	9 19/	10 782	12 358	7 723	11 256	10 381
headings	7.174	10.762	12.550	1.125	11.230	10.501
Transverses	953	979	782	972	998	801
Diagonal	2.328	2.328	4.281	1.955	1.955	3.596
Gutter	7.625	5.931	5.083	7.625	5.931	5.083
Purlin	5.694	4.694	3.912	6.259	5.754	4.795
Side purlin	683	617	655	655	588	626
TOTAL	41.400	38.257	38.080	39.723	37.677	37.989

Table 2.6. 15.165.1001-numbered unit price analysis

Pose No	A	Analysis			Unit
15.165.1001	Preparation and installation of every kind of (rafters, one-way slabs, continuous beams, si support metals, columns, girders and etc ma	ined fashion tels, corner	(Tons)		
Pose No	Definition	Unit	Quantity	Unit Price	Amount (TL)
10.130.1708	Material: Steel sections (with attritions)	Kg	1020	13.80	14 076.00
10.200.1708	Plain black sheet (5% for welded, bolted and riveted connections) Labor:	Kg	51	13.80	703.80
19.100.1089	Steel manufacture workshop	Hours	7	891.37	6 239.59
19.100.1113	Mobile crane	Hours	2	382.79	765.58
10.100.1019	Cold steel worker	Hours	2	45.00	90.00
10.100.1062	Regular worker (loading, unloading, horizontal and vertical transport at job site)	Hours	2	32.50	65.00
	Material + workmanship				21 939.97
	23% contractor profit and general exp	oenses			5 484.99
	Cost of 1 Ton				27 424.96

Pose No	An		Unit		
15.165.1002	Truss manufacture from steel section	s and install	ation		Ton
Pose No	Definition	Unit	Quantity	Unit Price	Amount (TL)
	Material:				
10.130.1708	Steel sections (with attritions)	Kg	1020	13.80	14 076.00
10.130.1708	Steel sections (5% for welded, bolted and riveted connections)	Kg	51	13.80	703.80
	Labor:				
19.100.1089	Steel manufacture workshop	Hours	8	891.37	7 130.96
19.100.1113	Mobile crane	Hours	2.5	382.79	956.98
10.100.1018	Hot iron worker	Hours	2	45.00	90.00
10.100.1062	Regular worker (loading, unloading, horizontal and vertical transport at job site)	Hours	2	32.50	65.00
	Material + workmanship				23.022,74
	23% contractor profit and general exper	ises			5 755.69
	Cost of 1 Ton				28 778.43

Table 2.7. 15.165.1002-numbered unit price analysis

3. RESULTS AND DISCUSSION

For 2.5 m truss spacing of gothic roof, total system weight was identified as 42 035 kg at 6 m truss span, 39 860 kg at 8 m truss span and 37 437 kg at 9.6 m truss span. For 3 m truss spacing of gothic roof, these weights were respectively identified as 40 257 kg, 37 373 kg and 35 903 kg. For 2.5 m truss spacing of gable roof, system weight was identified as 41 400 kg at 6 m truss span, 38 257 kg at 8 m truss span and 38 080 kg at 9.6 m truss span. For 3 m truss spacing of gable roof, these weights were respectively identified as 39 723 kg, 37 677 kg and 37 989 kg. Steel weights per unit area of greenhouse systems are given in Figure 3.1.

Average weight was calculated as 38 811 kg for gothic roofs and 38 854 kg for gable roofs. The difference between the average weights of different roof styles was not found to be significant (Figure 3.2) since cross-sections of steel sections selected to be within lateral displacement limits specified in TS EN 13031-1 (2020) were larger than the designs made according to the "Regulation on Design, Calculation and Construction of Steel Structures" (Anonymous, 2018).

https://doi.org/10.47068/ctns.2023.v12i23.015

Current Trends in Natural Sciences (CD-Rom) ISSN: 2284-9521 ISSN-L: 2284-9521

Figure 3.2. Average weight of greenhouse systems

Overall average weight was calculated as 40 854 kg for 6 m truss span, 38 292 kg for 8 m truss span and 37 352 kg for 9.6 m truss span (Figure 3.2). Average weight of 9.6 m truss span was 9.3% lighter than 6 m truss span and 2.52% lighter than 8 m truss span. Although there was an increase in the cross-sections of the profiles when the truss spans increased, greenhouse weights decreased since there was a decrease in the amount of material to be used.

System average weight was calculated as 39 512 kg for 2.5 m truss spacing and 38 154 kg for 3 m truss spacing. Average weight of 2.5 m truss spacing was 3.56% lighter than 3 m truss spacing.

https://doi.org/10.47068/ctns.2023.v12i23.015

Current Trends in Natural Sciences (on-line) ISSN: 2284-953X ISSN-L: 2284-9521

Profile cross-sections increased with increasing truss spacing, but average weight decreased since the amount of material used decreased. Then, a decrease in costs was observed again.

To see the change in the results if different steel sections are used in greenhouse load-bearing members, in gothic roof system with 8 m truss span and 2.5 m truss spacing, SAP 2000 was used for analysis of the system with column sections of IPE160, truss sections of 2L70x6/0/, diagonals of 2L50x5/0/ and purlins of UPN80. Overall weight of the greenhouse system was calculated as 85 773 kg and it was 115.19% heavier than the system with the same span, spacing and roof type. In terms of greenhouse safety and bearing capacity, the displacement perpendicular to the gutter was 41.85 mm, the displacement parallel to the gutter was 45.16 mm and the highest capacity utilization ratio of the load-bearing members in the worst-case scenario was 98.83% for trusses and 77.91% for columns. It was seen that present steel sections were more advantageous in terms of both weight and bearing capacity.

Bill of quantities and cost analyses of steel greenhouse systems are provided in Table 3.1, Table 3.2 and Table 3.3. For total cost calculations, unit prices of 27 424,96 [‡] ton⁻¹ (Table 2.6) and 28 778.43 ₺ ton⁻¹ (Table 2.7) were used. Among 6 m span systems, gable roof system with 3 m truss spacing was identified as the most economical system (1 110 971.80 赴). Among 8 m span systems, gothic roof system with 3 m truss spacing was identified as the most economical system (1 050 209.74 赴). Among 9.6 m span systems, gothic roof system with 3 m truss spacing was identified as the most economical system (1 011 221.07 赴).

	Table 5	<u>.1. Вш о</u>	j quantities ana cos	t analysis for 6 m trus	s span
			2.5 m trus	s spacing	
	Pose No	Unit	Unit price (₺)	Quantity	Cost (Ł)
	15.165.1001	Ton	27 424.96	24.18	663 244.96
of	15.165.1002	Ton	28 778.43	17.85	513 736.13
c rc		TOTAI	4	42.04	1 176 981.09
thi			3 m truss	spacing	
3	Pose No	Unit	Unit price (₺)	Quantity	Cost (₺)
	15.165.1001	Ton	27 424 96	23.79	652.321.60
	15.165.1002	Ton	28 778 43	16.47	474.018.73
		TOTAI		40.26	1 126 340.33
			2.5 m trus	s spacing	
	Pose No	Unit	Unit price (₺)	Quantity	Cost (Ł)
	15.165.1001	Ton	27 424.96	24.18	663 244.96
of	15.165.1002	Ton	28 778.43	17.22	495 440.24
e ro		TOTAI		41.40	1 158 685.20
able			3 m truss	spacing	
Ü	Pose No	Unit	Unit price (₺)	Quantity	Cost (₺)
	15.165.1001	Ton	27 424.96	23.79	652 321.32
	15.165.1002	Ton	28 778.43	15.94	458 650.47
		TOTAI		39.72	1 110 971.80

Table 3.1. Bill of a	quantities and cost ana	lysis for 6 m truss span
	1	<i>J</i>

Table 3.2. Bill of quantities and cost analysis for 8 m truss span

Current Trends in Natural Sciences (on-line) ISSN: 2284-953X ISSN-L: 2284-9521 Current Trends in Natural Sciences (CD-Rom) ISSN: 2284-9521 ISSN-L: 2284-9521

2.5 m truss spacing						
	Pose No	Unit	Unit price (₺)	Quantity	Cost (₺)	
oof	15.165.1001	Ton	27 424.96	21.40	586 829.97	
	15.165.1002	Ton	28 778.43	18.46	531 321.19	
c L		TOTAL		39.86	1 118 151.16	
thi	3 m truss spacing					
ß	Pose No	Unit	Unit price (₺)	Quantity	Cost (Ł)	
	15.165.1001	Ton	27 424.96	18.71	513 160.49	
	15.165.1002	Ton	28 778.43	18.66	537 049.25	
		TOTAL		37.37	1 050 209.74	
	2.5 m truss spacing					
	Pose No	Unit	Unit price (₺)	Quantity	Cost (Ł)	
	15.165.1001	Ton	27 424.96	20.45	560 916.40	
of	15.165.1002	Ton	28 778.43	17.80	512 379.51	
e r(TOTAL		38.26	1 073 295.91	
pld	3 m truss spacing					
Ü	Pose No	Unit	Unit price (也)	Quantity	Cost (Ł)	
	15.165.1001	Ton	27 424.96	18.71	513 160.49	
	15.165.1002	Ton	28 778.43	18.97	545 795.01	
		TOTAL		37.68	1 058 955.51	
Table 3.3. Bill of quantities and cost analysis for 9.6 m truss span						
	Doco No	Unit	2.5 m truss sj Unit price (#)	Quantity	Cost (k)	
	15 165 1001	Ton	27.424.06	17.52	490 742 55	
\mathbf{f}	15.105.1001	Ton	27 424.90	17.35	480 742.33	
ro	13.103.1002		28 //8.45	19.91 37 44	372 901.70 1 053 644 25	
Gothic	-	IUIAL	3 m truce en		1 055 044.25	
	Pose No	Unit	Jin ti uss sp Unit price (#)	Quantity	Cost (#)	
	15 165 1001	Ton	27 424 96	16.25	<u> </u>	
	15 165 1002	Ton	27 424.90	19.65	565 494 71	
	15.105.1002	TOTAL	20110.45	35.90	1 011 221 07	
		2.5 m truss spacing				
roof	Pose No	Unit	Unit price (†)	Quantity	Cost (†)	
	15 165 1001	Ton	27 424 96	17.53	480 742 55	
	10.100.1001	Ton	29.779.42	20.55	591 /28 10	
	15 165 1002	Ton	20//040		1 $1 $ $- $ $- $ $- $ $1 $ 1	
H	15.165.1002	Ton TOTAL	28.778.43	38.08	1 072 170.65	
ble r	15.165.1002	TOTAL	20.770.45 3 m truss sn	<u>38.08</u>	1 072 170.65	
Gable r	15.165.1002	Ton TOTAL Unit	28.778.45 <u>3 m truss sp</u> Unit price (b)	38.08 acing Ouantity	1 072 170.65	
Gable r	15.165.1002 Pose No 15.165.1001	Ton TOTAL Unit	28.778.43 3 m truss sp Unit price (b) 27.424.96	38.08 acing Quantity 19.22	<u>1 072 170.65</u> <u>Cost (b)</u> 527 032 59	
Gable r	15.165.1002 Pose No 15.165.1001 15.165.1002	Ton TOTAL Unit Ton Ton	3 m truss sp Unit price (b) 27 424.96 28 778 43	20,33 38.08 acing Quantity 19.22 18.77	<u>1 072 170.65</u> <u>Соst (ђ)</u> 527 032.59 540 223 51	

Present cost analyses revealed that average cost of greenhouse systems with 9.6 m truss span was 2.3% more economical than the average cost of systems with 8 m truss span and 8.8% more economical than the average cost of systems with 6 m truss span. The average of cost of the systems with a truss spacing of 3 m, on the other hand, was 3.5% more economical than the average of cost of the systems with 2.5 m truss spacing. In terms of overall costs of gothic and gable roof systems, there was no significant difference between them. Average costs of greenhouse systems are given in Table 3.4.

Current Trends in Natural Sciences Vol. 12, Issue 23, pp. 137-149, 2023 https://doi.org/10.47068/ctns.2023.v12i23.015

Current Trends in Natural Sciences (on-line) ISSN: 2284-953X ISSN-L: 2284-9521 Current Trends in Natural Sciences (CD-Rom) ISSN: 2284-9521 ISSN-L: 2284-9521

Table 3.4. Average costs of greenhouse systems			
System	Average cost (₺)		
6 m truss span	1 143 245		
8 m truss span	1 075 153		
9.6 m truss span	1 051 073		
2.5 m truss spacing	1 108 821		
3 m truss spacing	1 070 826		
Gothic roof	1 089 425		
Gable roof	1 090 223		

While the average cost of systems with 2.5 m truss spacing was 1 108.821 b, it is 1 070 826 b for systems with 3 m truss spacing. Systems with a truss spacing of 2.5 m were more economical than the systems with a truss spacing of 3 m (Table 3.4). There was no significant difference between the costs of gothic and gable roof systems.

Among the gothic roof systems, the lowest unit area cost was calculated as 351.12 bm^{-2} for 9.6 m truss span, 364.66 bm^{-2} for 8 m truss span and 391.09 bm^{-2} for 6 m truss span. Likewise, the lowest cost per unit area of the gable roof systems were calculated as 370.58 bm^{-2} , 367.69 bm^{-2} and 385.75 bm^{-2} for systems with 9.6 m, 8 m and 6 m truss spans, respectively (Figure 3.3).

Figure 3.3. Unit area costs

Truss span and truss spacing not only affect the weight of greenhouse systems, but also affect the bearing capacity. Cross-sections of steel sections increased linearly with increasing truss spacing and spans. Since the amount of material used decreased with increasing truss spacing and spans, bill of quantities also decreased. With the increase in truss span and spacing, there was a decrease in overall weights, thus a decrease in costs. Capacity utilization rates of the steels used in load-bearing systems also increased with increasing truss spacing and spans. This increase in capacity utilization rate shows that load-bearing member is exposed to more stress, but it also shows that the systems with small truss spacing and spans were stronger in terms of bearing capacity.

Current Trends in Natural Sciences (on-line) ISSN: 2284-953X ISSN-L: 2284-9521

4. CONCLUSION AND RECOMMENDATIONS

It was concluded based on present findings that gothic roof system with 3 m truss spacing and 9.6 truss span was lighter and more economical than the other systems. In terms of safety, gothic and gable roof systems with 6 m truss span and 2.5 m truss spacing were superior to other systems.

Present findings clearly elucidated the effects of truss spacing, truss span and roof styles on crosssections of load-bearing steel members, overall weight and final cost of greenhouse systems. In this study, cost comparisons were made only for steel-framed greenhouses. Further research is recommended to include wood and aluminum-framed greenhouse systems. Likewise, effects of different greenhouse heights and truss styles on final cost of greenhouse systems can also be studied.

5. ACKNOWLEDGEMENTS

This study presents partial results of a Graduate Thesis

6. REFERENCES

- Anonim, (2022). 2022/3 Construction and Installation Unit Prices. T.C. Ministry of Environment, Urbanization and Climate Change, The Higher Technial Boards, Ankara.
- Anonim, (2018). Regulation on Design, Calculation and Construction Principles of Steel Structures, T.C. Ministry of Environment, Urbanization and Climate Change, 30333, Ankara.
- ANSI/AISC 360-10, (2010). Specification for Structural Steel Buildings. American Institute of Steel Construction, Chicago, Illinois, USA.
- CSI, (2016). Analysis Reference Manual for SAP2000, Computers and Structures, Inc., Berkeley, CA, USA.
- Fırat, S. S., (2019). Sera Tipi Hafif Çelik Konstrüksiyon Yapılarda Eleman ve Birleşimlerin Tasarımı [Member and connection design of cold formed steel greenhouses]. MSc thesis. Erzurum: Erzurum Technical University, Graduate School of Natural and Applied Sciences, Department of Civil Engineering, p. 369.
- Saltuk, B., (2005). Mersin İli ve İlçelerinde Bulunan Plastik Seraların Yapısal Yönden İncelenmesi ve Geliştirme Olanakları Üzerine Bir Araştırma A study on the structural analysis and development of plastic greenhouses in Mersin and its provinces]. MSc thesis. Samsun: Cukurova University, Graduate School of Natural and Applied Sciences, Department of Farm Structures and Irrigation, p. 87.
- TS 12741, (2001). Greenhouse-terms and definitions. Turkish Standards Instituion, Ankara, 15 p.
- TS 498, (2021). Design loads for building. Turkish Standards Instituion, Ankara 28 p.
- TS 648, (1980). Building code for steel structures. Turkish Standards Instituion, Ankara, 49 p.
- TS EN 10025-2, (2019). Hot rolled products of structural steels-Part 2: Technical delivery conditions for non-alloy structural steels, Turkish Standards Instituion, Ankara, 44 p.
- TS EN 10025-5, (2019). Hot rolled products of structural steels-Part 5: Technical delivery conditions for structural steels with improved atmosferic corrosion resistance. Turkish Standards Instituion, Ankara, 39p.
- TS EN 13031-1, (2020). Greenhouses Design and construction Part 1: Commercial production greenhouses. Turkish Standards Instituion, Ankara, 96 p.
- TS EN 13031-1/AC, (2022), Greenhouses Design and construction Part 1: Commercial production greenhouses, Turkish Standards Instituion, Ankara, 7 p.
- TS EN 13206:2017+A1, (2020). Plastics Thermoplastic covering films for use in agriculture and horticulture. Turkish Standards Instituion, Ankara, 54 p.
- TS EN 1993-1-1, (2022). Eurocode 3: Design of steel structures Part 1-1: General rules and rules for buildings. Turkish Standards Instituion, Ankara, 123 p.
- Yakut, M. (2007). Çelik kafes yapıların çözüm ve boyutlandırılmasında bilgi teknolojilerinin kullanılması [Usage of information technology to analyze and design of steel truss structures], MSc thesis. Samsun: Ondokuzmayıs University, Graduate School of Natural and Applied Sciences, Department of Civil Engineering, 91 p.
- Yüksel, A. N ve Yüksel, E. (2012). Sera Yapım Tekniği [Greenhouse Construction Technique]. Hasad Publishing, 272, İstanbul.
- Zabeltitz, C. (1990). Greenhouse Construction in Function of Better Climate Control. Acta Horticulturae, 263,357-374.