Current Trends in Natural Sciences (on-line) ISSN: 2284-953X ISSN-L: 2284-9521 Vol. 8, Issue 15, pp. 149-155, 2019

Current Trends in Natural Sciences (CD-Rom) ISSN: 2284-9521 ISSN-L: 2284-9521

RESEARCHES CONCERNING THE FIGHT AGAINST CYDIA POMONELLA L. FROM THE APPLE TREE PLANTATION IN THE NORD EAST AREA OF ROMANIA

Cristina Ionela Boboc¹, Ionel Perju^{1,*}, Ionuț Vasile Ungureanu¹, Sorina Sirbu¹, Elena Iurea¹, Mădălina Iuliana Gherghel¹, Simona Mihaela Chelaru¹

¹ Research Station for Fruit Growing Iași, România

Abstract

The purpose of this paper is to use different methods of controlling/fighting the codling moth (Cydia pomonella (Linnaeus)) (Lepidoptera: Tortricidae) pest in the pedoclimatic conditions in N-E Romania, following the biological cycle of the species.

Cydia pomonella L. is one of the most damaging pests of apple plantations, it can compromise crops in proportions of up to 90-100%, with two, sometimes 3 generations per year depending on the area where the plantation is located.

The researches were carried out in the experimental field of the Iasi Growing Development Research Station, having as study material two apple varieties, namely Idared and Golden, where the pest was monitored by means of pheromone traps. Fighting this pest was achieved by applying 12 phytosanitary treatments.

The results obtained after the two years of observations, following the application of the phytosanitary treatments on the two experimental variants, registered differences regarding the attack of this pest.

Keywords: Cydia pomonella L., pheromone, traps.

1. INTRODUCTION

The apple is an important fruit species on the globe, it has an extremely high number of pathogens and pests that cause damage. There are about 80 diseases caused by viruses, mycoplasmas, bacteria, fungi and physiological imbalances; besides these diseases we can add the attack of 64 species of insects and mites, as well as 8 species of nematodes and at least 2 species of rodents (Filipescu C. et al., 2001).

The apple worm, *Cydia pomonella* L. (Lepidoptera: Tortricidae), is the most important and damaging pest of apple plantations worldwide,therefore, very studied in recent years (Basheer et al., 2016, Piskorski and Dorn, 2011; Jones and Wiman, 2008).

In our country, apple production is often affected by the Cydia pomonella L. pest whose larva can attack the fruit, once it has penetrated the fruit, the larva digs a gallery to the seedbed, consuming the seeds completely, the fruit falls before they reach full maturity.

2. MATERIAL AND METHOD

The researches were carried out in the experimental field of the Iasi Forestry Research Development Station, having as study material two apple varieties, namely Idared and Golden, where the occurrence of the pest was monitored by atraPOM pheromones, produced by the Institute of Chemistry Research "Raluca Ripan" from Cluj Napoca.

Vol. 8, Issue 15, pp. 149-155, 2019

Current Trends in Natural Sciences (on-line) ISSN: 2284-953X ISSN-L: 2284-9521

This pheromone contains the active substance - (E.E) -8,10-Dodecadien-1-ol. Combating this pest was accomplished by applying a number of 12 phytosanitary treatments using the Garden Jet Spray Pump, 1000 L capacity. The experience was placed on the territory of Miroslava village, in an intensive apple plantation, the planting distance being 4x3, established in 2010, the crown shape used palmette.

Figure 1. Original photo - atraPOM pheromone trap

The flight of *Cydia pomonella L*. was observed by capturing adults, specifying the occurrence of the pest, the number of generations occurring during the vegetation period of the trees, as well as establishing the optimal moment of application of the phytosanitary treatments, which were applied

establishing the optimal moment of application of the phytosanitary treatments, which were applied to the warning with the following criteria: biological, green and phenological.

Pheromone traps were placed before the start of the flight in the tree crown at a height of 1.5-2 m above the ground, with 5-6 traps per hectare.

The traps were checked every two days from the end of April to August by recording the catches, followed by the flight curve of the species. At each scoring, the trap adhesive plates were changed to have better adhesion, and the pheromone was changed every three weeks.

The pest biology and the effectiveness of the treatments were influenced by the climatic conditions found in Table 1 and Table 2.

The climatic data recorded during 2017 (January - December 2017) are shown in Tables 1.

Regarding the amounts of rainfall recorded between January 2017 and December 2017, they were in excess compared to the multiannual average.

In terms of low temperatures recorded during 2017, the lowest value was recorded on February 10 and 11, 2017 (-21.9 $^{\circ}$ C).

The period under study was characterized by rainfall distributed unevenly throughout the growing season without hailstones, with prolonged drought periods.

In the months (VI-IX) the volume of precipitations was also lower than normal and their distribution uneven, so, in the richest months of rainfall (April - May) there were values ranging from 72.0 to 140, 4 mm, much larger than the July-September period, when values ranging from 23.2 - 67.0 mm were recorded (Table 1).

The average temperature recorded in the April-September period oscillated from 10.1 $^{\circ}$ C (in April) to 22 $^{\circ}$ C (in May) (Table 1). The lowest value was recorded on April 19, 2017 (-2.5 $^{\circ}$ C) when the apple was blooming and the highest value was 37.7 $^{\circ}$ C recorded on August 5 (Table 1).

Current Trends in Natural Sciences (on-line) ISSN: 2284-953X ISSN-L: 2284-9521

Current Trends in Natural Sciences (CD-Rom) ISSN: 2284-9521 ISSN-L: 2284-9521

Table 1. The cumatic conditions of 2017						
	Year 2017					
MONTH	TEMPERATURE °C			RAINFALL	HUMIDITY	
	AVERAGE	MINIMUM	MAXIMUM	(mm)	%	
I	-4.89	-17.9	7,3	83.6	97.26	
II	-0.8	-21.9	14.4	13.8	82.10	
III	7.89	-1.2	22.7	107	89.75	
IV	10.04	-2.5	25.5	134.4	92.3	
V	20.61	3.9	30.3	72	61.51	
VI	20.64	9.1	34.5	56	65.9	
VII	21.03	10.6	34.2	56.4	69.3	
VIII	20.99	6.8	37.7	67	61.76	
IX	16.79	0.7	31.5	31.2	68.09	
Х	10.9	-1	28	62.4	94.83	
XI	5.85	-3.9	16.4	34.2	98.4	
XII	3.03	-7	13.2	48	99.84	

Table 1. The climatic conditions of 2017

Table 2. Climatic conditions of 2018

	YEAR 2018				
MONTH	TEMPERATURE °C			RAINFALL	HUMIDITY
	AVERAGE	MINIMUM	MAXIMUM	(mm)	%
I	-0.98	-14.4	9.1	17,6	79.45
Π	-2.03	-18.4	10.5	27.8	86.1
ш	5.33	-17	18.6	71.2	78.45
IV	15.3	1.5	29.5	11.8	54.6
V	18,48	4.8	32.2	11	58.38
VI	20.44	7.2	34.3	164.6	71.8
VII	20.67	8.5	32	140.8	80.19
VIII	22.67	11.4	33.8	2.4	66.48
IX	16.57	2.1	31.1	17.4	68.5
Х	12.32	2.4	26.7	2.4	65.34
XI	2.46	-12.3	18.8	22.8	88
XII	-1.41	-13.5	7.2	40.4	90.26

Current Trends in Natural Sciences (on-line) ISSN: 2284-953X ISSN-L: 2284-9521

Vol. 8, Issue 15, pp. 149-155, 2019

Current Trends in Natural Sciences (CD-Rom) ISSN: 2284-9521 ISSN-L: 2284-9521

	Table 3. Apple treatment programme,	2017 ul SCDI IAȘI	
NO. TREATMENT	PHENOPHASE SPECTRUM OF COMBAT	PRODUCTS	CONC%
Treatment I Swelling of buds Desprout	Swelling of buds; codling moth, mites, San Jose	CONFIDOR OIL	0,15%
Treatment II 20% blooming of the flower	Swell of the corolla, scab, mildew, fire blight,	B. BORDELAISE	0,5%
	insects	DECIS 45 VG	0,003%
Treatment III Shaking off the petals	Beginning of shaking off the petals, mildew, scab, monilia, insects	SYSTHANE FORTE	0,02%
		KARATHANE	0,05%
penus		PROTEUS	0,05%
Treatment IV as big as a nut fruit- 10 mm	From 8 to 12 days of tratament; scab, mildew, insects	ANTRACOL 70 WP	0,3%
		KUMULUS DF	0,3%
		RUNNER 2 F	0,05%
Treatment V- 10 days from T4 As big as a nut fruit 20-25 mm	Cydia p. T1 G1, different insects, scab, mildew	CALYPSO 480 SC	0,02%
		LUNA EXPERIENCE	0,05%
Treatment VI	Cydia p. T2 G1, different insects, scab, mildew, monilia	CORAGEN	0,015%
Fruit 30- 40 mm		FLINT PLUS	0,125%
Treatment VII	San Jose T1 G1, Adoxophyes, mites, scab, mildew	BELLIS	0,8%
ireament vii		NOVADIM PROGRESS	0,075%
Tretment VIII half the normal size fruit - 10 days from the previous	San Jose T2 G1, scab, leaf miners, Cydia T1 G 2	CORAGEN	0,015%
		FOLICUR SOLO	0,05%
Treatment IX	Cydia p. T2 G2, different inects, pathogens: scab, mildew.	DECIS 25 WG	0,003%
10 days from the previous		ANTRACOL 70 WP	0,3%
Treatment X Normal size fruit 15 days from T 9	Cydia p., pathogens: scab, mildew, pests	NOVADIM PROGRESS	0,075%
		FOLICUR SOLO	0,5%
Treatment XI 10-12 days from T10	San Jose T1 G2, scab, mildew, codling moth	CALYPSO	0,02%
		SYSTHANE FORTE	0,02%
Treatment XII	Cydia p., different insects, pathogens: scab, mildew	BELLIS	0,8%

Table 3. Apple treatment programme, 2017 at SCDP IAŞI

The climatic data recorded during 2018 are shown in Table 2.

The study period was characterized by low rainfall distributed unevenly, without hailstones, with prolonged drought periods in April (11.8 mm), May (11 mm), August (2.4 mm) and September (17.4 mm), these being considered deficient months from this point of view, and in June and July there was an excess of precipitation, the values of deviation from the multiannual averages being between +76.1 mm and +81.3 mm (Table 2).

Current Trends in Natural Sciences	

Current Trends in Natural Sciences (on-line) ISSN: 2284-953X ISSN-L: 2284-9521 Current Trends in Natural Sciences (CD-Rom) ISSN: 2284-9521 ISSN-L: 2284-9521

The average temperature during the January-December period oscillated from -0.98 $^{\circ}$ C (in January) to 22.67 $^{\circ}$ C (in August) (Tables 2). The lowest value was recorded in February 2018 (-18.4 $^{\circ}$ C) and the highest value was 33.8 $^{\circ}$ C recorded on June 10 and August 26 (Table 2).

The phytosanitary programs applied during the two years of study were dependent on the climatic conditions and the occurrence of the Cydia Pomonella L. pest on pheromone traps (Table 3 and 4).

1 ab.4 Apple treatment programme, 2018 at SCDP 1AŞI				
NO. TREATMENT	PHENOPHASE SPECTER DE COMBAT	PRODUCTS	CONC. %	
Treatment I	Aphids(hibernating eggs), hibernanting larvae of	OVIPRON TOP	0,15%	
Swelling of	"Quadraspidiotus perniciosus" and of red spidre's	DECIS 25 WO	0,003%	
buds Desprout	winter eggs, "Panonicus ulmi" mildew, scab	B.BORDELLAISE	0,5%	
	Fire blight of rosacea, Scab, Mildew San Jose louse, Aphids, Apple worm, Apple's	CHORUS 50 WG	0,05%	
Treatment II 20% blooming		KUMULUS	0,3%	
of the flower	wasp, Ladybug beetles	MOSPILAN 20 8G	0,03%	
		BORO ET	0,1%	
Treatment ΠΙ	Scab, mildew, fireblight	FLINT PLUS 64 WG	0,125%	
Shaking off the	Apple worm, miners insects, aphids, San Jose	RELDAN 22 EC	0.18%	
petals	louse, wasps	CODICEVO	0,2%	
T	Charle and I down	MACCANI	2.25	
Treatment IV Fruit as a nut-	Scab, mildew Cydia p. T1 G1, codling moth, defoliators,	KUMULUS DF	0,3%	
10 mm	Miner insects	CALYPSO	0,02%	
Treatment V		LUNA EXPERIENCE	0,05%	
10 days from T 4	Seab, mildew Cydia p. T2 G1, codling moth, defoliators,	VONDOZEB 80 WP	0.2%	
Fruit as a nut	Miners insects	CORAGEN	0,01%	
20- 25 mm		ENERGEVO	0.3%	
	Scab, maildew Cydia p., Defoliators	DELAN 700 WG	0,05%	
Treatment VI Fruit 30- 40 mm		NOVADIM PROGRESS	0.075%	
		FIGHTER PHOS	0.2%	
Treatment VII	Scab, mildew San Jose louse, T1G1, codling moth, defoliatoars,	SYSTHANE FORTE	0.02%	
		DECIS 25 WG	0.003%	
	miners insects	KERAFOL	0.2%i	
Treatment VIII		ANTRACOL 70 WP	0.3%	
IIalf the normal size fruit - 10 days from the previous	San Jose louse T2G1, Cydia p., defoliatoars, miners insects, mitens scab, mildew	CALYPSO 480 SC	0.02%	
Treatment IX 10 days from the previous		CORAGEN	0.01%	
	Cydia p. T2 G2, miners insects, defoliatoars codling moth, scab, mildew	DELAN PRO	0,2%	
	counte mon, scab, mitter	ENERGEVO	0.2%	
Treatment X Normal size fruit 15 days from T 9	Cydia p. spotted tentiform leafminer, leaf miners - Leucoptera, wooly apple aphid, San Jose louse G2 – summer generation	RELDAN 22 EC	0.18%	
		SYSTHANE FORTE	0.02%	
Treatment XI 10-12 days from T10	Cydia p., different insects, pathogens: seab,	FOLICUR SOLO	0.05%	
	mildew	NOVADIM PROGRESS	0.075%	
Tre a tment XII	Cydia p., different insects, pathogens: seab,	BELLIS	0,08%	
Treatment All	mildew	CALYPSO 480 SC	0,02%	

Tab.4 Apple treatment programme,	2018 at SCDP IASI
1uv. + Apple u cument programme,	

Vol. 8, Issue 15, pp. 149-155, 2019

Current Trends in Natural Sciences (on-line) ISSN: 2284-953X ISSN-L: 2284-9521

3. RESULTS AND DISCUSSIONS

We can see in the graph that in 2017, the flight curve of the species recorded a maximum catch of 18 adults on the trap on May 15 compared to 2018 when traps on May 15 were 21 adults per / trap, with a difference between the two years on maximum catches recorded by 4 butterflies, due to the fact that temperatures were relatively higher than in the same period of 2017.Temperature along with recorded precipitations are very important in the appearance of the Cydia pomonella L., so no days of rainfall have been recorded on the pheromone trap.

Figure 1. Analysis of flight curves in years of study

The climatic conditions (high temperatures, precipitation and high relative humidity) in 2017 influenced the evolution and attack of the apple worm so that the first generation debuted on May 3rd and June 20th respectively the second generation with a number of adults trapped which go beyond the economic threshold of harm.

Although the number of catches was above the economic threshold for damage,

between the appearance of the pest in 2017 and the date of appearance in 2018 there were no significant differences.

Although the number of catches was above the economic damage threshold in both years of study, both the 2017 and 2018 phytosanitary programs recorded a high effectiveness in combating apple worm in the two years of study, particularly with Calypso 480 SC (0.02%), Mospilan 20 SP (0.015%), Coragen (0.151/ha).

Warning periods for apple worms - Cydia pomonella L. in the two years of study were

- in 2017: G I: May 11th-^{19th}; G II: June 28th.-July 4th;
- in 2018: G I:May $8^{\text{thv}}-^{17\text{th}}$; G II: June $18^{\text{th}}-30^{\text{th}}$;

The obtained results help us to determine the optimal moment of phytosanitary treatments in order to correlate good phytosanitary protection of the orchard with good economic yield.

4. CONCLUSIONS

Both phytosanitary programs have yielded results in the control of Cydia Pomonella L., we can recommend Calypso 480 SC, Coragen, Mospilan 20 SG products, with very good results in control of Cydia Pomonella L., a low degree of attacked fruit being registered.

Current Trends in Natural Sciences (on-line) ISSN: 2284-953X ISSN-L: 2284-9521

Extremely important to prevent Cydia Pomonella pest attack is the time of application of phytosanitary treatments, which may vary depending on climatic conditions, with preventive treatments being the most recommended before the damage of crops. The results of the occurrence of the Cydia Pomonella L. pest in apple orchards can be applied in the area where the experience has taken place.

5. RECOMMENDATIONS

To control this very dangerous pest for apple orchards, it is recommended:

- Monitoring the appearance of the pest according to the climatic conditions of the area where the crop is located;

- Development of a phytosanitary plan according to the estimated reserve of the previous year;
- Applying treatments to the warning when the economic threshold for damage is exceeded;
- Protect useful entomofauna by using selective insecticides;

6. References

- Andrea Bassi, J. L. Rison, J. A. Wiles- Chlorantraniliprole (Dpx-E2y45, Rynaxypyr[®], Coragen[®]), A New Diamide Insecticide For Control Of Codling Moth (Cydia Pomonella), Colorado Potato Beetle (Leptinotarsa Decemlineata) And European Grapevine Moth (Lobesia botrana)- https://pdfs.semanticscholar.org
- BasheerA. M., Alhaj Sh. I., Asslan L. H. (2016) *Parasitoids on codling moth Cydia pomonella (Lepidoptera: Tortricidae) in apple and walnut orchards in Syria*, Bulletin OEPP, vol 46(2), pp. 295-297.
- Brunner J.F., Doerr M., and Granger Keith (2008). Activity of Rynaxypyr on codling moth eggs and larvae, Rynaxypyr Pome Fruit Symposium, 4-5 November 2008, Bolzano Italy
- Jones V.P., Wiman N. G. (2008). Longevity of the Adult Codling Moth, Cydia pomonella, and the Obliquebanded Leafroller, Choristoneura rosaceana, in Washington Apple Orchards, *J. Insect Sci.* 8, 14.
- Mesut İşci, Recep Ay- Determination of resistance and resistance mechanisms to thiacloprid in *Cydia pomonellaL*. (Lepidoptera: Tortricidae) populations collected from apple orchards in Isparta Province, Turkey- Crop Protection, Volume 91, January 2017, Pages 82-88.
- Piskorski R., Dorn S. (2011). How the oligophage codling moth Cydia pomonella survives on walnut despite its secondary metabolite juglone, Journal of Insect Physiology, 57,6, 744-750.
- Tălmaciu M. (2011). Protecția plantelor. Entomologie [Plant protection. Entomology]. Editura "Ion Ionescu de la Brad", Iași.
- Ungureanu Cătălina, Filipescu C., Tălmaciu Nela (2005). Combaterea chimică a speciei Cydia pomonella L. în județul Botoșani, în anul 2002. [Chemical control of the species Cydia pomonella L. in Botosani county, in 2002.] *Lucrări științifice, vol 48, seria Horticultură*, Editura "Ion Ionescu de la Brad", Iași.