RESEARCH ON THE ENVIRONMENTAL QUALITY IN BRATIA RIVER

Alina - Mihaela Truță^{1,*}, Alina Georgiana Anghel¹, Alina D. Răcăreanu Rădulescu Florescu¹

¹ University of Pitești, Faculty of Sciences, Physical education and Informatics, Târgu din Vale St. 1, 110040, Pitești Romania

Abstract

The main purpose of the study was to determine the quality of Bratia River. The present paper was based on the bibliographic material as well as the field research carried out during 2016-2017. The research objectives were the following: identification of qualitative and quantitative structure of phytobenthic biocenoses in the established monitoring points; determination of the phytoplankton algae families in the monitoring stations; identification of the structure of benthic biocenoses in the monitoring points; determining points; establishing saprobity indices for each species identified and incorporation of the monitoring sections into the appropriate saprobity class; determining the quality of Bratia River according to the Water Framework Directive 2000/60/EU. We have identified 54 species in the phytobenthonic samples, grouped in three phyla: Cyanobacteria, Bacillariophyta and Chlorophyta. We have also identified 47 species in the structure of benthic zoocenosis belonging to 25 families from 8 genera. The main benthic invertebrate groups in the Bratia River were: Ephemeroptera, Plecoptera, Chironomidae, Trichoptera, and Gammaridae. Oboarele Mari and Gămăceşti recorded a high quality ecological status, while Berevoiesti station had a good ecological status.

Keywords: Bratia River, environmental quality, macrozoobentos, phytobenthos

1. INTRODUCTION

Bratia River is a hydrographic artery having important flowing and morphometric elements within Argeş basin, a general North-South flowing and a permanent character (fig. 1). It is situated in Muşcelele Argeş, in the Getic Sub-carpathians. Doamnei River lies to the west of Bratia River. The river springs form Obîrşi Mountains, with an altitude of 2314 in the Iezer Massif, and flows into Târgului River, with a length of 56.9 km and an average annual flow of 2.6 m³/s. Bratia River basin is situated in Argeş County and has arteries on the southern slopes of the Southern Carpathians. The density of the hydrographic network is large, consisting of both permanent and temporary valleys. The main tributaries of the river are: Brătioara, Năvrap, Râusor (PMBH Arges-Vedea, 2012).

The main purpose of this study was to determine the quality of Bratia River. The paper was based on the bibliographic material as well as the field research carried out during 2016-2017. The research objectives were the following: identification of qualitative and quantitative structure of phytobenthic biocenoses in the established monitoring points; determination of the phytoplankton algae families in the monitoring stations; identification of the structure of benthic biocenoses in the monitoring saprobity indices for each species identified and incorporation of the monitoring sections into the appropriate saprobity class; determining the quality of Bratia River according to the Water Framework Directive 2000/60/EU.

Current Trends in Natural Sciences (on-line) ISSN: 2284-953X ISSN-L: 2284-9521 Vol. 6, Issue 12, pp. 291-301, 2017

Current Trends in Natural Sciences (CD-Rom) ISSN: 2284-9521 ISSN-L: 2284-9521

Figure 1. The hydrographic network of Bratia River in the upper course (Cadastral Map Berevoiești, 2010)

2. MATERIALS AND METHODS

We collected qualitative and quantitative samples of phyto- and macrozoobenthos from three stations: Oboarele mari, Gămăcești and Berevoiești. Sampling was done in November 2016 and April 2017 for phytobenthos and August, November 2016 and May 2017 for macrozoobenthos as recommended in the specialized studies. Phytobenthos sampling was done by scraping submerged stones with a smoother surface that stood in water at depths of about 25-30 cm for at least 14-21 days, covered with 100% microphytobenhic elements. Determination of the sampling surface was done by measuring the stones. We have had three samples for the quantitative analysis of the macrozoobenthos, with a Sorber-Sampler benthic mesh having a sampling surface of 0.16 m^2 and mesh size 200 µm. The samples were sorted and processed in the Hydrobiology Laboratory of the University of Pitesti. We have calculated a series of ecological indices for Ephemeroptera order, representative of the structure of Bratia River: ecological spectrum, frequency, species constancy, relative abundance, ecological significance index (W). We determined the ecological status in accordance with the methodology required by the Water Framework Directive 60/2000 /EC by calculating the multimeter index in each of the sampling stations, taking into account the following indices: Saprob Index (SI), EPT_I Index (individuals) (IEPT_I), Shannon-Wiener Index (SWI), Number of Families (FAM), OCH Index (Oligochaeta-Chironomidae) Index (IOCH/IO), Function Group Index (IGF), Preferred Water Flow Index (reophil /limnophil) (REO/LIM) by the formula: IM = 0.3*IS+0.1*IEPT I+0.2*ISH+0.1*FAM+0.1*IOCH+0.1*IGF+0.1*REO/LIM

3. RESULTS AND DISCUSSIONS

Due to the peculiarities and physico-chemical conditions providing a predominantly rocky underlayer, Bratia River is dominated by a cenosis made of lithophil periphyton. We have identified 54 species of three phyla in the three sampling stations: *Cyanobacteria, Bacillariophyta* and *Chlorophyta* (Table 1 - 3). The best represented in terms of phyla was *Bacillariophyta* (48 species/ 88.88%), %), followed by *Chlorophyta* with 4 species (7.40%) and *Cyanobacteria* with 2 species (3.70%) (fig.3).

Current Trends in Natural Sciences (on-line) ISSN: 2284-953X ISSN-L: 2284-9521 Current Trends in Natural Sciences (CD-Rom) ISSN: 2284-9521 ISSN-L: 2284-9521

140.	Species	Density mounsand exim
	Cyanobacteria	
1.	Oscillatoria limosa	820
	Total Cyanobacteria	820
	Bacillariophyta	
2.	Achnanthes clevei	9400
3.	Achnanthes exilis	2800
4.	Achnanthes minutissima	6300
5.	Amphora ovalis	90
6.	Caloneis amphisbaena	80
7.	Cocconeis placentula	1000
8.	Cymbella affinis	780
9.	Cymbella prostrata	230
10.	Cymbella tumida	640
11.	Diatoma hiemale	2100
12.	Diatoma vulgare	3000
13.	Epithemia zebra	920
14.	Frustulia rhomboides	140
15.	Gomphonema acuminatum	210
16.	Gomphonematruncatum	1200
17.	Gomphonema ventricosum	2900
18.	Mastogloia brauni	3600
19.	Mastogloia eliptica	1180
20.	Mastogloia smithi	1220
21.	Melosira granulata	40
22.	Navicula cincta	1250
23.	Navicula minima	1890
24.	Navicula minuscula	5200
25.	Navicula placentula	560
26.	Navicula subtilissima	6800
27.	Neidium iridis	820
28.	Neidium productum	380
29.	Nitzschia linearis	490
30.	Nitzschia palea	1390
31.	Pinnularia gibba	440
32.	Pinnularia subcapitata	1360
33.	Rhoicosphenia curvata	620
	Total Bacillariophyta	59030
	Chlorophyta	
34.	Cladophora sp.	4960
35.	Ulothrix sp.	380
	Total Chlorophyta	5340
	TOTAL GENERAL	65190

Table 1. List of species and numerical density identified in Bratia River biodiversity - Oboarele Mari Station

Figure 2. Number of phytoplankton algae phyla in Bratia River in the three sampling stations

Table 2. List of species and numerical density identified in Bratia River biodiversity - Gămăcești Station

No.	Species	Density thounsand ex/m ²
	Cyanobacteria	
1.	Oscillatoria tenuis	250
	Total Cyanobacteria	250
	Bacillariophyta	

<u>http://www.natsci.upit.ro</u> *Corresponding author, E-mail address: <u>alina.vladutu@upit.ro</u>

Vol. 6, Issue 12, pp. 291-301, 2017

Current Trends in Natural Sciences (on-line) ISSN: 2284-953X ISSN-L: 2284-9521 Current Trends in Natural Sciences (CD-Rom) ISSN: 2284-9521 ISSN-L: 2284-9521

2.	Achnanthes clevei	1200
3.	Cocconeis bacillum	3500
4.	Cocconeis placentula	4000
5.	Cymatopleura solea	2200
6.	Cymbella cistula	4500
7.	Diatoma vulgare	1600
8.	Epithemia zebra	800
9.	Frustulia rhomboides	600
10.	Gomphonema ventricosum	100
11.	Gyrosigma acuminatum	400
12.	Mastogloia brauni	4200
13.	Mastogloia eliptica	3700
14.	Melosira granulata	300
15.	Navicula minuscula	4400
16.	Neidium iridis	6000
17.	N.eidium producturn	4900
18.	Nitzschia linearis	2100
19.	Pinnularia gibba	1500
20.	Stauroneis phoenicenteron	700
21.	Surirella linearis	200
22.	Surirella ovata	500
23.	Synedra ulna	3600
	Total Bacillariophyta	51000
	Chlorophyta	
24.	Cladophora sp.	1300
25.	Ulothrix sp.	400
	Total Chlorophyta	1700
	TOTAL GENERAL	52950

 Table 3. List of species and numerical density identified in Bratia River biodiversity
 - Berevoieşti Station

No.	Species	Density thounsand ex/m ²
	Cyanobacteria	
1.	Oscillatoria limosa	300
	Total Cyanobacteria	300
	Bacillariophyta	
2.	Achnanthes clevei	1300
3.	Achnanthes minutissima	3200
4.	Cocconeis placentula	600
5.	Cymbella affinis	450
6.	Cymbella cistula	820
7.	Cymbella prostrata	590
8.	Diatoma vulgare	360
9.	Gomphonematruncatum	920
10.	Gomphonema ventricosum	1320
11.	Hantzschia amphioxys	1310
12.	Mastogloia brauni	85
13.	Navicula cincta	690
14.	Navicula minuscula	2200
15.	Navicula subtilissima	3400
16.	Neidium iridis	150
17.	Nitzschia linearis	600
18.	Nitzschia palea	29000
19.	Pinnularia gibba	410
20.	Synedra ulna	840
	Total Bacillariophyta	48245
	Chlorophyta	
21.	Cosmarium botrytis	180
22.	Ulothrix sp.	350
23.	Zygnema sp.	310
	Total Chlorophyta	600
	TOTAL GENERAL	49385

The relative density in all 3 sampling stations is dominated by diatoms - 95%, followed by chlorophites - 4% and cyanobacteria accounting for only 1% (fig. 3).

Figure 3. Relative density of algae taxa in the biodiversity of Bratia River

The numerical density of algae phylia in the biodiversity of Bratia River was nearly the same for bacillariophyta in each station. For chlorophytes, however, the situation is different, in the sense that the highest density was found in Oboarele Mari station, i.e 5340 thousand ex/m^2 (fig. 4). In the case of cyanobacteria, the density recorded the lowest values, being slightly predominant in number of species. The highest density of cyanobacteria was recorded in Oboarele Mari station.

Figure 4. Numerical density of algae phyla in the biodiversity of Bratia River for each station

Taxonomic diversity decreased downstream upstream, with up to 35 taxons in the upstream sector, Oboarele Mari station, 25 taxons in Gămăcești station and 23 taxons in Berevoiești station (fig. 5)

Figure 5. Variation of the number of taxa in the three sampling stations

As regards the structure of benthic zoocenosis, following the processing of the samples, we have found the following aspects:

August 2016 (fig. 6): ephemeroptera recorded high values of the numerical density both in Gămăcești and Oboarele stations (432 and 492 ind./m²), decreasing progressively from upstream downstream for the last station (Berevoiești), as opposed to chironomidae; plecoptera distribution from upstream downstream was variable, with high values in Gămăcești (132 ind./m²), but very low values in the other cases (minimum 15 ind./m² in Berevoiești).

Vol. 6, Issue 12, pp. 291-301, 2017

Current Trends in Natural Sciences (CD-Rom)

ISSN: 2284-9521

ISSN-L: 2284-9521

Current Trends in Natural Sciences (on-line) ISSN: 2284-953X ISSN-L: 2284-9521

Figure 6. Comparative analysis of the macrozoobentonic structure of Bratia River upper basin – August 2016

November 2016: The analysis of the benthic zoocenosis structure in November, as shown in fig.7, revealed the clear dominance of ephemeroptera, followed by plecoptera, the other groups being poorly represented. The maximum number of ephemeroptera individuals/ m^2 was recorded in Berevoieşti (728 ind./ m^2), with a progressive decrease downstream to Oboarele station, followed by a slight increase in Gămăcești, but the values remained high, over 200 ind./ m^2 ; plecoptera distribution from upstream downstream was uniform in all three stations with very close values, 150 ind./ m^2 on average.

The macrozoobentonic structure in **May 2017** (fig. 8) showed the following: Ephemeroptera and Plecoptera recorded a decrease in the number of ind./ m^2 from upstream downstream; however, ephemeroptera recorded a surprising increase in Gămăcești station, where plecoptera were absent.

Figure 7. Comparative analysis of the macrozoobentonic structure of Bratia River upper basin – November 2016

Following the macrozoobenthic analysis and the samples taken from the three stations across Bratia River, we have identified 47 species belonging to 25 families (table 4).

Vol. 6, Issue 12, pp. 291-301, 2017

Current Trends in Natural Sciences (on-line) ISSN: 2284-953X ISSN-L: 2284-9521 Current Trends in Natural Sciences (CD-Rom) ISSN: 2284-9521 ISSN-L: 2284-9521

Figure 8. Comparative analysis of the macrozoobentonic structure of Bratia River upper basin - May 2017

Table 4. The list of species					
	Family	Species			
Oligocheta	Naidae	Amphichaeta leydigi			
		Nais alpinus			
	Tubificidae	Psammoryctides barbatus			
		Ryacodrilus falciformis			
Amphipoda	Gamaridae	Gammarus fossarus			
		Gammarus pulex			
Ephemeroptera	Ephemeridae	Ephemera dainca			
	Ephemerelliidae	Ephemerella ignita			
		Ephemerella vulgata			
	Caënidae	Caënis macrura			
	Baëtidae	Baëtis alpinus			
		Baëtis lutheri			
		Baëtis muticus			
		Baëtis vernus			
	Ecdyonuriidae	Ecdyonurus dispar			
		Ecdyonurus torrentis			
		Epeorus sp.			
Plecoptera	Perlodidae	Isoperla gramatica			
	Leuctridae	Leuctra albida			
	Cupnidae	Cupnia nigra			
	Nemouridae	Nemura marginata			
		Protonemura intricata			
		Protonemura sp.			
Trichoptera	Hydropsichidae	Hidropyche pellucidula			
	Sericostomatidae	Sericostoma personatum			
	Ryacophilidae	Ryacophila fasinata			
	Hydropticidae	Hydroptica forcipata			
Chironomidae	Chironomidae	Cladotanitarsus mancus			
		Paratanytarsus lauternborni			
		Tanytarsus synuatus			
		Clapoduma viridula			
		Polypedilum convictum			
		Polypedilum lactum			
		Microspectra bidentata			
		Tanytarsus binulus			
		Mycrospectra radialis			
		Polypedilum albicorn			
Diptera	Blipharicedae	Liponeura spp.			
	Psychodidae	Pericoma spp.			

<u>http://www.natsci.upit.ro</u> *Corresponding author, E-mail address: <u>alina.vladutu@upit.ro</u>

Vol. 6, Issue 12, pp. 291-301, 2017

Current Trends in Natural Sciences (on-line) ISSN: 2284-953X ISSN-L: 2284-9521

Current Trends in Natural S	Sciences (CD-Rom))
	ISSN: 2284-9521	l
1	ISSN-L: 2284-9521	l

	Simuliidae	Simulium reptans
	Athericiidae	Atherix ibis
	Tipulidae	Tipula spp.
	Ceratopogonidae	Bezzia spp.
	Dixidae	Dixa spp.
Simuliidae	Simulidae	Simulium costatum
		Simulium monticola
		Simulium equinum.

The distribution of ephemeroptera species per month showed the following aspects:

Almost all 11 species were identified in August 2016 (fig. 9), their number in each station increasing progressively from Berevoiești to Gămăcești and decreasing again in Oboarele station; We have identified all 5 genera: Baëtis, Ephemerella, Epeorus, Ecdyonurus, and Caenis; Baëtis had very high densities in all stations; Baëtis alpinus had the maximum density in Berevoiești station (324 ind./m²), but was absent in the other two stations; Ephemerella ignita had low numerical densities in Oboarele and Gămăcești stations; Ephemerella danica was present in all three stations, with the maximum density in Oboarele station; Ephemerella vulgata was present in all three stations, with the maximum density in Oboarele station; the other species were rare and low in number. Only 10 species out of 11 were present in November 2016 (fig. 10); Baëtis alpinus was present in all 3 upstream stations, with the highest numerical density in Berevoiesti station (328 ind./m2); the values decreased sharply in Oboarele and Gămăcesti (17 ind./m²); *Baëtis lutheri* was present only in two stations, Oboarele and Gămăcești, with the maximum density in Gămăcești (54 ind./m²); Ephemerella ignita was present in Oboarele and Gămăcești stations, with the maximum density in Gămăcești (157 ind./m²); Ephemerella, Ephemera and Caenis were absent in Berevoiești station; Epeorus sp. and Ecdyonurus dispar were absent in Gămăcești, being present in Oboarele and Berevoiești stations; Ephemerella vulgata had the same density in Oboarele and Berevoiești stations.

Figure 9. Structure of ephemeroptera fauna in Bratia River basin - August 2016

All 11 species were identified in May (fig. 11), their number increasing progressively to Gamăcești where we identified the maximum of 8 species; all five genera were present - *Baëtis, Ephemerella,*

Current Trends in Natural Sciences (on-line) ISSN: 2284-953X ISSN-L: 2284-9521

Epeorus, Ecdyonurus, and Caenis; Baëtis alpinus had the highest density in Berevoiesti and Oboarele (767, respectively 235 ind./m²), which gradually decreased to 30 ind./m² in Gămăcești station;

Figure 10. Structure of ephemeroptera fauna in Bratia River basin

Figure 11. Structure of ephemeroptera fauna in Bratia River basin

Baëtis lutheri was present in Gămăcești station (37 ind./m²) and its density decreased progressively downstream to 25 ind./m² in Oboarele. However, its density was quite low in Berevoiești; Baëtis vernus was present in all three stations, reaching the highest density in Berevoiești (20 ind./m²);

Current Trends in Natural Sciences (on-line) ISSN: 2284-953X ISSN-L: 2284-9521

Ephemerella ignita recorded low numerical densities in Oboarele and Gămăcești; *Ephemerella vulgata* was present only in two stations, Berevoiești and Gămăcești, with the maximum density in Berevoiești; the other species were rare.

The ecological spectrum (Fig.12.) shows the following aspects: Ecdyonuridae was dominant in Oboarele station, followed by *Ephemeridae* genus; the other genera accounted for less than 10%. *Caenidae* genus prevailed in the ecological spectrum of Gămăcești station, followed by Ephemeridae with a share of 3.5%. Caenidae was also dominant in Berevoiești station, with a share of 31.25%; the other families had a share below 10%.

Figure 12. The ecological spectrum for Oboarele, Gămăcești and Berevoiești stations

In terms of the main ecological parameters, the processed data are listed in Table 5. It shows the frequency of species in each sampling station, abundance, constancy and the category to which each species belongs. *Ephemera danica* is characteristic of upstream stations, being a 1st class indicator. *Baëtis alpinus* is characteristic of downstream stations, as an indicator of 2nd-3rd class quality. *Ephhemera danica* is characteristic for almost all the stations under research, which shows that the underlayer is rocky-cloddish, the flow speed is quite high, and the species is lithoreophil.

	SPECIES	F%	Constancy sp.	n	А	W	W_X	Category of species
S	Ephemera danica	100	EUCONSTANT	58	8,5	8,5	W4	CHARACTERISTIC
1	Ephemerella ignita	66	CONSTANT	98	14,3	9,4	W4	CHARACTERISTIC
	Caenis macrura	100	EUCONSTANT	34	4,53	4,9	W3	ACCESORY
	Baëtis lutheri	66	CONSTANT	42	4,76	4	W3	ACCESORY
S	Ephemera danica	66	CONSTANT	22	2,8	5,2	W4	CHARACTERISTIC
2	Ephemerella ignita	66	CONSTANT	186	23,6	9,4	W4	CHARACTERISTIC
	Caenis macrura	66	CONSTANT	50	6,34	4,9	W3	ACCESORY
	Baëtis lutheri	66	CONSTANT	74	9,13	4	W3	ACCESORY
	Baëtis muticus	33	ACCESORY	8	1,01	0,5	W2	ACCESORY
	Ephemera vulgata	66	CONSTANT	20	2,4	5	W3	ACCESORY
S	Baëtis alpinus	100	EUCONSTANT	1032	80,9	80,9	W5	CHARACTERISTIC
3	Baëtis vernus	100	EUCONSTANT	38	2,92	2,9	W3	ACCESORY
	Ecdyonurus torrentis	33	ACCESORY	35	2,7	0,8	W2	ACCESORY

Table 5. Ecological characterization of the ephemeroptera biocenosis in the upper basin of Bratia river

According to the specialized standard methodology we have calculated the Multimetric Index (MI) based on the macrozoobenthos analysis in order to determine the quality of the ecological status (tab. 6). The upper course had a very good ecological status, unlike Berevoiești sector whose status was good.

Current Trends in Natural Sciences (on-line) ISSN: 2284-953X ISSN-L: 2284-9521 Current Trends in Natural Sciences (CD-Rom) ISSN: 2284-9521 ISSN-L: 2284-9521

There of 2 containing of the normality of constants for the sampling station					
Index	OBOARELE	GĂMĂCEȘTI	BEREVOIEȘTI		
Saprob Index (30%)	1,23	1,29	1,29		
EPT_I Index (10%)	0,64	0,34	0,01		
Shannon-Wiener Index (20%)	1,2	1,26	0,05		
Number of Families (10%)	0,4	0,03	0,4		
Index OCH (10%)	0,03	0,04	0,24		
Function Group Index (10%)	0,07	0,94	0,79		
Preferred Water Flow Index (10%)	0,01	0,004	0,92		
MULTIMETER INDEX	0,72	0,77	0,63		
ECOLOGICAL STATUS	very good ecological status	very good ecological status	good ecological status		

		T . T . T .		0 .1 11
Table 6. Determination o)f the multimetric inde.	x and the quality of	t ecological status	for the sampling station

4. CONCLUSIONS

- We have identified 54 species in the phytobenthic samples grouped in three phyla: Cyanobacteria, Bacillariophyta and Chlorophyta. As regards the share of phyla, Bacillariophyta was best represented with a number of 48 species (88.88%), followed by chlorophites with 4 species (7.40%) and cyanophytes with 2 species species (3.70%). We could also notice an increase in the number of species from downstream to upstream, with most of the species in Oboarele Mari (35), Gămăceşti (25) and Berevoieşti (23).
- We have identified 47 species in the structure of benthic zoocenosis belonging to 25 families from 8 orders. The main benthic invertebrate groups found in Bratia River were: Ephemeroptera, Plecoptera, Chironomidae, Trichoptera, and Gammaridae. Oboarele Mari had high quality ecological status unlike Berevoiesti whose ecological status was good.
- In the future, it is advisable to supervise Bratia River to prevent potential sources of anthropogenic negative impact and to monitor it with an annual frequency to ensure that the quality of ecological status is maintained at least at the current level.

5. REFERENCES

- Bauernfeind, E., Humpesch, U.H. (2001). Die Eintagsfliegen Zentraleuropas (Insecta:Ephemeroptera): Bestimmung und Ökologie – Naturhistorischen Museums in Wien;
- Bauernfeind, E., Moog, O. (2000). Mayflies (Insecta:Ephemeroptera) and the assessment of ecological integrity; a methodological approach – In Assessing the Ecological Integrity of Running Waters Edited by JUNGWIRTH, M. & all., Kluwer Academic Publishers, p. 61 – 70;
- Botnariuc, N., Cure, V. (1999). *Determinator al larvelor de Chironomidae (Diptera) din fauna României*. [Determinant of Chironomidae larvae (Diptera) from Romania's fauna.]. Ed. Academiei Române, București, 144 p.
- Botoșăneanu, L. (1963). Insecte, arhitecți și constructori sub apă [Insects, architects and underwater builders]. Ed. Științifică, București;
- Elliott, J.M., Humpesche, U.H., Macan, T.T. (1988). *Larvae of the British Ephemeroptera: A key with ecological notes* Freshwatwr Biological Association, Scientific publication No. 49.
- Francisc, N.T., Barna, A. (1998). Alge verzi unicelulare (Chlorococcales) Determinator. [Unicellular green algae (Chlorococcales) Determinant]. Presa Universitară Clujeană.
- Godeanu, S.P. (2002). *Diversitatea lumii vii Determinatorul ilustrat al florei și faunei României*, Vol. II Apele continentale [Diversity of the Living World The Illustrative Determinant of Romania's Flora and Fauna, Vol. II Continental Waters], Ed. Bucura Mond, București;
- Hindá, K.F., Komárek, J., Marvan, P., Růžička, J. (1975). Kľúč na určovanie výtrusných rastlín I.,II diel, riasy. SPN, Bratislava.
- Hortobagyi, T. (1973). The microflora in the settling and subsoil water enriching basins of the Budapest waterworks A comparative study in ecology, limnology and sistematics, Akademiai Kiado, Budapest
- Ionescu, Al., Péterfi, L. Şt. (1979). Tratat de algologie. [Algology] vol III, Editura Academiei RSR;
- Ionescu, Al., Péterfi, L. Şt. (1981). Tratat de algologie. [Algology] vol IV, Editura Academiei RSR;
- Telcean, I., Cupşa, D. (2005). *Ghid practic pentru studiul biologie râurilor*. [Practical Guide to the Study of River Biology]. Ed. Ecozone, Iaşi.
- *** (2010). Cadastral Map, Berevoiești
- *** (2012). *Planul de Management al bazinului hidrografic Argeş Vedea* [River Basin Management Plan Argeş Vedea], PMBH. Retrieved December, 2017, from <u>http://www.rowater.ro/daarges</u>

*Corresponding author, E-mail address: alina.vladutu@upit.ro